Datenqualität erfolgreich managen

Datenqualität erfolgreich managen

Artikel erschienen in IT Magazine 2010/12

Daten werden zum Produkt

Spricht man von Qualitätsmanagement bei Daten, geht es darum, dass die Daten in ihrem Lebenszyklus begriffen werden und dass die Qualität der Daten entsprechend der Anwendung in den Business-Prozessen definiert wird. Ausserdem muss die Datenqualität periodisch überwacht werden. Erfüllen die Daten die Qualitätsanforderungen nicht, werden die Ursachen ermittelt und organisatorische und technische Lösungen erarbeitet und umgesetzt. Ein Problem-Management-System, sorgt dafür, dass aufgetretene Datenqualitätsprobleme systematisch bearbeitet werden.


Aus Informationen werden damit Produkte, die erstellt, qualitätsgeprüft, benutzt und weiter verarbeitet werden. Ein wichtiger Punkt hierbei ist die Festlegung der Verantwortung für die Daten. Ein Data Owner ist fachlich zuständig für die Daten und deren Qualität über Applikationsgrenzen hinweg und bestimmt über notwendige Massnahmen zur Qualitätssicherung und die Verwendung der Daten in anderen Kontexten. Das Datenqualitätsmanagement hat einen Programmcharakter und besteht aus einer Reihe von Aktivitäten, die gemäss ihrer Dringlichkeit geplant und umgesetzt werden. Die weitere organisatorische Anbindung und Binnenstruktur ist aus der Struktur des Unternehmens abzuleiten. Bei Business-Intelligence-Anwendungen wird Datenqualität meist innerhalb des Business Intelligence Competency Centers (BICC) organisiert. Klar ist, dass Personen mit Fachwissen die Verantwortung für die Datenqualität tragen müssen. Weiter darf nicht vergessen werden, dass die Kommunikation mit allen Beteiligten eine sehr wichtige Rolle spielt. Die Verantwortlichen für die Datenqualität müssen ihre Anliegen gut vermitteln können. Letztlich ist Datenqualität ein Teil der Qualitätskultur eines Unternehmens und betrifft jeden, der in der Firma arbeitet.



Verschiedene Herangehensweisen

Bei der Herstellung von Compliance gehen Datenqualitätsinitiativen vom Management aus. Solche zentrale Initiativen haben den Vorteil, dass sie abgestützt sind und finanziell unterstützt werden. Somit kann das Thema Datenqualität systematisch angegangen werden. Beispiele für eine Top-Down-Herangehensweise sind neben Compliance insbesondere Risk Management und unternehmensweites Data Warehousing.


Andere Initiativen beginnen in Teilbereichen, zum Beispiel beim Adressen-Management in CRM-Systemen, wobei die Datenqualität punktuell verbessert wird. Denn auf der Fach- oder Abteilungsebene sind Datenqualitätsprobleme oft bekannt, auch wenn sie nicht so bezeichnet werden, und werden dort von den Mitarbeitern mit Ad-hoc-Methoden gelöst. Eine solche Bottom-up-Vorgehensweise kann bei guter Kommunikation der Resultate auch auf höherer Ebene Erfolg haben. Der Vorteil liegt dabei darin, dass engagierte Teams entstehen, die von ihrer Arbeit überzeugt sind und später auch in der Lage sind, die Policies aufgrund ihrer konkreten Praxis zu definieren.




Neuen Kommentar erfassen

Anti-Spam-Frage Wie hiess im Märchen die Schwester von Hänsel?
Antwort
Name
E-Mail
SPONSOREN & PARTNER